The Materials Genome Initiative and Additively Manufactured Metals: New Computational Tools and the Central Role of Materials Data

Peter Voorhees, Greg Olson, Begum Gulsoy | Northwestern University Juan De Pablo | University of Chicago

Alexander Chadwick, Northwestern University

Challenge of Materials Development

Challenge of Materials Development

Newer materials also follow a 20-year development cycle

1970	1991	2020
Exxon	SONY	

Conventional Approach

High-cost = Barrier to the introduction of new materials Recertification requirement = Prevents even minor changes

CHMaD

Materials Genome Initative

"The Materials Genome Initiative will enable discovery, development, manufacturing, and deployment of advanced materials at least twice as fast as possible today, at a fraction of the cost." MGI Strategic Plan 2014

- Developing a Materials Innovation Infrastructure
 - Integrating experiments, computations, data, and machine learning
 - Open-access/Open-source
- Achieving National Goals with Advanced Materials
 - Develop the *infrastructure* to design new materials
- Equipping Next Generation Materials Workforce
- Engaging all stakeholders

CHMaD

Result: A new design paradigm wherein the material and the device are designed *simultaneously*

Integration of computational DATA & tools to reduce time and/or cost Industry / Public Domain

SUCCESS STORIES

Image from: https://www.macworld.co.uk/review/apple-watch/original-apple-watch-review-3544044/

Apple New Alloys

New alloys developed for Apple Watch: Stainless steel - Aluminum - Gold

Materials Innovation Case Study: Corning's Gorilla[®] Glass 3 for Consumer Electronics

National Institute of Standards and Technology U.S. Department of Commerce

https://www.CorningGorillaGlass.com

- Version 3 2013 Clean sheet to production in 22 months
- At the end of 2015 Gorilla Glass was used in 4.5 Billion+ devices
- Success is a result of verified computational tools, experience with previous versions and fundamental research
- No need for certification

https://www.nist.gov/sites/default/files/documents/2018/06/26/ materials_innovation_case_study_gorilla_glass_3_020816.pdf

Materials Innovation Case Study: QuesTek's Ferrium[®] M54[®] Steel For Hook Shank Application

- Clean sheet to production in 7 years
 3 years for formal qualification
- Use of computational tools to predict the variability in properties introduced by the manufacturing process
- Greatly reduced the time required for qualification: very few heats
- Success is a result of accurate databases for Fe-based materials and verified computational tools

https://www.nist.gov/sites/default/files/documents/2018/06/26/ materials_innovation_case_study_questek_090616.pdf

SpaceX Superalloys

New superalloy developed for Raptor Rocket Engine

3:10 PM · Sep 26, 2019 · Twitter for iPhone

Materials via Additive Manufacturing

Use localized heating to create novel structures

Aerospace: Fuel Nozzle

Improved Performance

Medical: Orthopedic Implants

Optimized medical implants based on mechanical response and bone ingrowth

Architected Materials

https://youtu.be/qwnzXPb5EKk

Grain Morphologies

Bulk Processed

Additively Manufactured

naantivery manoractored

I.M. McKenna et al, Acta Mater. (2014).

D.W. Rowenhorst et al, Current Op. Solid State, 2020

Rapid Solidification: Absolute Stability for 316L

Ferrite

Austenite

Thermodynamic data courtesy of J. Aroh, C. Pistorius, and A. Rollett (CMU), Mechant and Davis, Acta Mater. 1990

- With increasing interfacial velocity above V_l cells form, then dendrites, then back to cells
- Above V_a the interface is planar

It is likely that the interface is planar or composed of low amplitude cells

Rapid Solidification

- Velocity of laser beam is 10 cm/sec to over 1 m/s
- In the large velocity limit the interfacial velocity is related to the undercooling at the interface

 $V = \mu(T_L - T_I) - \mu\Gamma H$

Phase Field Method for AM

 Modify existing multiphase field models to include driving force from local undercooling

$$\frac{\partial \phi_i}{\partial t} = -L_{AC}(\{\phi\}) \left[W\left(\phi_i^3 - \phi_i + 3\phi_i \sum_{j \neq i} \phi_j^2\right) - \kappa_{AC} \nabla^2 \phi_i + L \frac{T_L - T_I}{T_L} \frac{\partial h(\{\phi\})}{\partial \phi_i} \right]$$

• Simple Rosenthal solution for the temperature field

Baseline 2D Results

Time (µs): 0

20 µm

307 μm x 77 μm, 80 Order Parameters, Isotropic

- Grains survive until the centerline: "Infinite" number of grain boundaries
- Trijunctions have nonzero mobilities and grain boundaries remain normal to S/L interface
- Changing normal of the melt pool leads to rotation of the interface

Semianalytical Model

- In the zero interfacial undercooling limit the trijunction remains perpendicular to the liquidus isotherm
- Since we know the temperature field, it is possible write a differential equation for the position of the trijunction as a function of time
- Phase field method is verified
- Curvature induced undercooling stops grain growth at the tips of grains

3D Simulations

Assume an isotropic mobility of the form:

 $L(\mathbf{n}) \sim \mu(\mathbf{n}) = [1 + \epsilon_4 (4(n_1^2 + n_2^2 + n_3^2) - 3)]$

- Molecular dynamics predicts ε_4 from 0.12 to 0.23
 - The simulations consider ε_4 of 0, 0.11 (reference), 0.22, and 0.3
- Domain is a 192 μm x 77 μm x 38 μm slab, total of 31 order parameters
- Single track typical melt pool width ~160 μm
- Typical runtime: 92 hours on 720 cores
 - Nonlinear transformation of order parameters yields order parameters as quasi distance functions
 - Approximately 2 TB of data per simulation
 - Requires over 2 TB of RAM

Time (µs): 1

$\varepsilon_4 = 0.00$

 $\epsilon_{4} = 0.22$

 $\epsilon_{4} = 0.11$

 $\epsilon_{4} = 0.30$

Light blue, dark blue, and brown grains all stop growing well before the center of the melt pool

Orange grain starts to cut off the light blue grain

Red and gold grains grew up from below and overtook the blue and brown grains

2D Slices Along Laser Path

In 2D slice, "epitaxial" grains appear to grow upright from substrate
Top skin of small grains grew in from other directions

2D Slices Along Laser Path

Andrew Birnbaum et Additive Manufacturing (2019)

• Upright, epitaxial growth and skin layer of small grains qualitatively similar to NRL single track builds