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ARGONNE NATIONAL LABORATORY

History: First US national lab (1946); extend Fermi’'s UC work on nuclear reactors (outside of population center)
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THE ADVANCED PHOTON SOURCE
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HIGH-ENERGY X-RAYS

Interaction properties:
s low attenuation
« small scattering angles - high Q access
« improved validity of Born approximation (< mult. scattering)

Enables:
s large and extreme environments, e.g. in thick-walled containment
s Scattering from bulk / away from surface in thick or high-Z samples
s operation in air

Microwave reactor Stress+temp-+activated

1keV  8keV  25keV  60keV

0.4 ym
14.1 ym 344 pm

X-ray penetration depth

into LiMn,O,

Additive manufacturing

High ring energy synchrotrons like APS (7 GeV) are brilliant HEX sources -> space and time resolution
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1-ID: COMBINED IN-SITU HIGH-ENERGY TECHNIQUES

Suite of sample environments/stages:

 All- full rotation normal to beam

» Flexiblity for custom user environments

~ Common z-positioning for robust calibration

1-ID-E hutch @ APS

SAXS

o

- \ 4
« Highe l \\\,

Far-fiel® - i
« 4 GE-RT47€ /// VaJ/s
”

* @1m: gmax~25 1/A
» Center-hole (SAXS)

Conica
Tomography
Lasers

g system
optics for <um

beams
* White and mono capable
6  BPMs, slits, DIC, etc




IMAGING MICROSTRUCTURE WITH HIGH-ENERGY X-RAYS

= Direct-beam based K
— Volume based on beam size, typically 0.1-10 mm3 SATIENMBRAN TR e e
Absorption Contrast Phase Contrast
— Linear resolution ~(beam size) /1000 Deach ifteranes e ==y Darsty aifrance e
H by the chject T to refraction of X-ray
— Absorption or phase contrast w/synchrotrons it TRt
1111 ctapart tactor.
— Rotation series-> reconstruct —
] Dense Sparse Dense
— 3D volume of morphological features (cracks, 2" phases ek
= B B

[image density)

= Diffraction-based, grain resolved (3DXRD or HEDM)
— Make xray volume (just) small enough to resolve distinct
reflections (synch <~10k grains) E
— Rotation series -> reconstruct ?
— 3D grain-resolved: size, position, orientation, strain "

— As detector is moved further away, more sensitive to ) H‘;@
strain than position (nf-, ff-, vff- modes) Rotation < | >
axis @ Bulksamples (mm’s)

= Scattering-based, grain averaged (SAXS and WAXS)

— Crystalline (‘powder’) & non-crystalline materials

— Strain and volume for each phase present

— Translate (& rotate) to image in 1D->2D->3D (scattering
tomography)

— Angle and energy dispersive modes ! Incident beam E= 40-120 keV; Scattering angles <10 deg




HEX: MULTI-SCALE, MULTI-MODAL IMAGING

Atomic Nano- Micro- Macro-

Structure

Specimen Component  Full Assembly
- :

/ ‘¥
- .
i
£ =

Non-destructive and
(often) in-situ

Wide size and time-
scales through
direct- and
reciprocal-space
methods

Length scale in meters

Multi-dimensional
imaging to test and
improve materials
models

Density Molecular Dislocation Single Crystal Polycrystal Finite Element
Functional Dynamics Dynamics Plasticity Plasticity Analysis
Theory

Scientific cases for hierarchical needs include: aerospace metals, batteries, SOFCs, nuclear materials and bio-materials



Small angle x-ray scattering:

IN SITU SAXS/WAXS CAPABILITIES

Wide angle x-ray scattering
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L. Wang, M. Lin and J. Almer, Acta Mat 76 (2014).




SCATTERING-BASED TOMOGRAPHY

» Useful for nano-grains, high deformation, weakly ordered systems (WAXS/PDF,SAXS)
* These are typically energy materials, geomaterials or biological materials
» Reconstruct a 2D scattering pattern per voxel: rich microstructural information

Absorption Aragonite intensity Byssus Absorotion

Aragonite intensity

25um resolution:
phases with similar
density can be easily
distinguished. Peak
shifts provide
intraphase
concentration
gradients.

Mg content (mol%) Macro strain, aragonite
10mm resolution
(smaller sample):

individual lamellae

can be
distinguished;
strains shown

na

(I}

07
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0z
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01

Leemreize, Almer, Stock & Birkedal. J. R. Soc. Interface 10 (2013) \‘ And @ higher resolution? See Henrik!




SCATTERING-BASED TOMOGRAPHY

3201
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C-fiber metakaolin geopolymer composites (‘green concrete’)
Local PDF measurements identify local atomic structure at fiber/matrix interface
Si/Al-O bonding associated with C-O-Al linkages (from DFT) @ interface

Responsible for good mechanical properties?
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Interphase

Interphase
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i\ Metakaolin geopolymer

Hajimohammadi, Masoumi, Almer, White et al,
JACeS, 2022; 105:1519-1532



Contents lists available at ScienceDirect

Acta Materialia

journal homepage: www.elsevier.com/locate/actamat

Full length article

Investigation of fatigue crack initiation from a non-metallic inclusion
via high energy x-ray diffraction microscopy

Diwakar Naragani ¢, Michael D. Sangid **, Paul A. Shade ®, Jay C. Schuren >,
Hemant Sharma €, Jun-Sang Park ¢, Peter Kenesei ¢, Joel V. Bernier ¢, Todd J. Turner °,
lain Parr ©

2 School of Aeronautics and Astronautics, Purdue University, West Lafayette, IN 47907, USA

b Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, OH 45433, USA
© Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA

4 Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA

* Rolls-Royce plc, Derby, DE24 8B, UK
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FATIGUE IN EMBEDDED INCLUSION

Experimental Details

Loading
Direction
z

Tomography Detector

Incoming
X-rays

m

E=65.3 keV

Direct beam tomography

* 1.5 (H) x 1(V) mm2 beamsize
« 1800 images over 360 deg
 ~5min per 1 mm3 volume

Far-field HEDM

 1.5(H) x 0.1 (V) mm2 beamsize

« 720 images over 180 deg

 ~10 min per 0.1mm3 volume (~2k grains)

» Build up larger volumes by vertical translation

Fatigue loading

RAMS device (in-grip rotation)

» Interrupt at several fatigue cycles for x-ray
measurements at min/max load

+ N=1,2,5,10,20,50,100,200,500,1k,2k,5k,10k

Al203 inclusion (~1.3mm tall) seeded in Ni superalloy (HT to equiaxed ~30um grain size)
Found with ultrasound then EDMd to ~center in 1x1 mm2 cross section sample



FATIGUE IN EMBEDDED INCLUSION: TOMOGRAPHY

“ Ib) c) |

Fatigue
loading ®

« Sample radiograph
and renderings of
reconstructed volume
(resolution ~1.5um).

Complex shape of
iInclusion mapped

After cycling to 10k
cycles, a crack was
found to initiate at the
matrix inclusion
interface



FATIGUE IN EMBEDDED INCLUSION: 3D STRAINS Leuguerre

tessellation for
grain maps.

Strain tensors
for each of ~2k
matrix grains
per 0.1mm
layer.

Significant
gradients near
Al203.

Al203 too fine
to determine
grain-resolved
strains.

¢4y (Microstrains)

S000.00

S000.00

e
| N | | -:I_._

2000
LLLLELLS




FATIGUE IN EMBEDDED INCLUSION: e-¢ EVOLUTION

Cycle O Cycle 1 Cycle 2,000 Cycle 5,000 Cycle 10,000
r— J— = J— I i a . - z . g -;u-m
(3 8] - D002
= : .
& s : gradients
v 2 E
® oz due to
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— a55 MPa .
o0 (Starting as
y l“" residuals)
al - 250
g ]
A ,&»ﬁ X 4
= g o e—0 iIn

I::L, given grain
"o are ~stable
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. _zﬁn ° . ° .

Eo Initiation at
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Im

-700.00

c) Max. Principal Stress
L.

250um




FATIGUE IN EMBEDDED INCLUSION: e-¢ EVOLUTION

Cycle 0 Cycle 1 Cycle 2,000 Cycle 5,000 | Cycle 10,000

’Ya cm

0.02
2
© é 0.015
X High shear
3 stress and
co-axiality
- ‘wiss gradients at
s § intergranular
e & .
< 5 crack site
z5
Good
cox  jndicators of
crack
Initiation

i) Stress Co-axiality

250pm




FATIGUE IN EMBEDDED INCLUSION: STRESSES || LOADING

Elasto-viscoplastic FFT grain-level model

g

¥

L

Material Map:

| EVP-FFT simulation I RR1000, Alumina, Gas

HEDM Results
Cycle 10,000; 600MPa

250pm

Corresponding to (b) and (f)

Corresponding to (a), (c), (d), (e), (g) and (h)

Y ——

RR100

Alumina inclusion

Dummy phase / buffer / de-bonding

-700.00 -500

-250 0 250
LELLLLLULGLELLLLLLL L]

500 700.00

When model incorporates:
* Microstructure & geometry
« from tomography & ff-HEDM
* Residual stresses
« from ff-HEDM @ no load
« Debonding
* From f-HEDM @ load

Grain-level stresses compare well to
those from ff-HEDM

Enhances ability to locate hot-spots

(e.g. crack formation) eg:

Contents lists available at ScienceDirect
Acta Materialia

journal homepage: www. alsevier.com/locate/actamat

Full length article

X-ray characterization of the micromechanical response ahead of a n
propagating small fatigue crack in a Ni-based superalloy =
Diwakar P. Naragani *, Paul A. Shade °, Peter Kenesei “, Hemant Sharma ©,

Michael D. Sangid *~

avriir. w07
* Mareriab and Manfocturing Dirrclosate. Air Fore Resoarch Laboratory, Wright-Natteson AFRL O 45430, U5A
* Advanced Mhoton Sowve. Arponne Natinal Laboratory. Argomne. i, GO4T0. USA



OUTLOOK: APS UPGRADE AND NEW HEX CAPABILITIES




APS U PG RAD E P ROJ ECT (APS_U ) Dark-period April 2023-June 2024

= New storage ring, 42 pm
i e i b= emittance @ 6 GeV, 200 mA

13-ID (GSECARS) 19-ID: ISN (XSD) . .
12-ID (XSD) R prese = New and updated insertion

11-ID (XSD) =5 ".l, ( ;;;I":;:; Long-Beamline Bldg.
/ // s I,‘ b
e |
/"

9-ID: CSSI (XSD)
Coherent Surface Scattering
Imaging

8-ID: XPCS (XSD)

X-ray Photon Correlation

20-ID: HEXM (XSD) devices, including SCUs

High-Energy X-ray Microscope
- / APS Upgrade Project | APS Upgrade Project \'

= Combined result in brightness
x,r feature beamlines |! enhanced/improved W |ncreases Of Up tO 5OOX
(Operator in parens) || beamlines \\

Spectroscopy (Operator in parens) .
7.1D (XSD) I\ . * 9 new feature beamlines +
60 (xs0) W\ R o0) Long Beamline Building

5-1D (DND-CAT)
4-ID: POLAR (XSD)

Polarization Modulation

27-ID (XSD)

= 15 enhanced and improved

28-ID: CHEX (XSD)

e beamlines
3-ID (XSD) : X5 cf oL
2-ID (XSD) o) i I".II".II I - | .-';I- / /301D (XSD) . EXpIOlt h Ig h performance

computing, Al
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L PtychoProbe Lk J
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i . & ]

Atomic and
3D Micro & Nano Diffraction

~800M DOE funding

HEXM ffirst experiments’ discussion @ APS-Users Meeting May 4 2023 (virtual, free registration)




HEXM BEAMLINE @ 20-ID

*= One of two ‘long beamlines’ under APS-U

= Two new white-beam hutches, at nominal distances
D@70 meters and E@180m

= 20-ID-E in Long Beamline Building shared with 19-ID In
Situ Nanoprobe

= Activated Materials Lab next to 20-ID-E (NSUF/DOE-NE)
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by e fl
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x‘ =
~ . =

b
-1l
|

20-ID-E (highest

20-ID-D resolut|on) I
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HEXM BEAMLINE @ 20-ID

In common building with ISN end-station
(not t e) A (Sec. 19-ID)
NOt 10 ScCale
wet-lab (shared)
sample prep lab
thermo-mechanical testing
activated materials lab

etc
Bl monochromators I short-focal-length optics
% sample / environment [ long-focal-length optics % {g}
% o >
I detectors . beam-expansion optics Iy SR s
SN <
A & >

Scu .

e ]
'E'ﬂl\’_' ................................................ . ’ N N — I ................................. I .
e-beam Ll1 N le .\ L3 | : \ D5'I !S
MBAlattice / \01 near-field  imaging
& tomog.

: \ N
g;;q‘;gﬁg(‘})omator M2: high-resolution \

monochromator system DBA: diffr. beam apertures
20 m

Om 30 m 70m 180 m



DARK-FIELD IMAGING

Enabled by new sources & beamlines: HEXM @ APS-U

— Lensless: BCDI -> MBA transverse coherence at 50 keV will match that of todays APS at 10keV
— Lens-based: Dark-field microscopy (DTU, ESRF, APS-LDRD)
— Enabled by:
 MBA Coherence, pre (post) sample lens optics, large hutch, high E resolution, high resolution detectors
— Explore various measurement strategies (e.g. ptychographic) and reconstruction algorithms
— ‘Zoom-in’ complement to today’s HEDM : access to sub-grain & nano-grain information not achievable
today
— Helping users choose technique(s)/modes to use is a challenge we are addressing

Simulations of BCDI patterns at E = 40 keV, sample-detector = 14 m,
detector resolution = 10 um, 26 = 10°, grain size = 10 um. (a) 2D shape of
the grain along the projection direction. (b) The grain is fully illuminated

(c) Coherence defining
aperture

. using perfectly coherent 50 um. (c) The grain is partially illuminated with
A 7 pytchographic measurement strategy in mind.
Xp (um) %o (um) Xp (um)
0 10 20 30 40 0 50 100 150 200 0 100 200 300 400
v t £ z
'\ '\Rotation z 2
| axis g
FF/NF HEDM Focusing ——
Strain and orientation s
information “ “

Maddali et al, “Sparse recovery of undersampled intensity patterns for coherent diffraction
imaging at high X-ray energies”, Sci Rep. 8 (1) (2018)




RECIPROCAL SPACE RESOLUTION HEXM @15m

samp-det,

collimated beam
N NN 2

Chart Area
——11-BM, 30 keV
0.001
——HEXM D4, 40 keV
0.0008 e HEXM, detector (10um pixel size)
Q ****** HEXM, size along q
g 0.0006 (50um grain)
- HEXM, size along beam
0.0004 .\ &% ~_ HEXM, energy bandwidth  (AE/E=1e-4)
0.0002 note AE/E to 3e-5
should be possible
0




EXPERIMENTAL TECHNIQUE GAIN FACTORS

« Gains at 70 keV relative to today's 70 m distance at 1-ID-E with SCU1 APS
» SCU1: 1.08 m long, 1.8 cm period, n =5 £ 2| (today)
« Future SCU-HEXM: 3.5 m long, 1.65 cm period, n =7 - 7 GeV
Figure of merit Experiment (;f(l)a;[;) (1“38 t:n) (;%Lénr?]) trlcr)rlljlrr:g
(180 m) APS-U
- large unfocused beam g (MBA)
central cone flux (tomography) 4.6 4.6 4.4 4.3 6 GeV
- apertured unfocused " 2000 200 400 600
beam
. - 2D-focused flux (spot . e
flux density size unimportant) 10 = = 10 2 02k SCU-HEXM (APS-U).
(f-HEDM, SAXS, PDF, 2 L=3.5m
fluorescence) - A =1.65cm
Q 107 : .
- 2D-focused flux density N’é
o (credit for spot size) (ST, £
br:'”'a”fﬁ’ ff-HEDM, SAXS, PDF, 530 530 250 190 o 107 7
conerent fiux Fluorescence) c
- coherence (BCDI) B 1 U33 (APS): "
= iL=24m
. - line-focused flux (focal £ -
vl l0ng width unimportant) 4.6 1.8 1.4 1.3 3 10k A, = 3.3 cm |
density (nf-HEDM) = U23 (APS)
= L=24m ~
vertical - 1-D focused flux density S 10" A =23¢ \ ]
brilliance (credit for focal width) 13.6 13.6 5.2 4.5 AT I T AT

(nf-HEDM) o 20 40 B0 80 100 120



LARGE, COHERENT FOCAL SPOTS (ZOOM-IN)

s Bragg coherent diffraction imaging (BCDI) on relatively large grains (tens of um) requires

similarly sized coherent focal spots.
s MBA lattice (“flat”) source offers ~ x 500 (150) - fold improved coherent flux (fraction), but

requires low-demag, or even magnification geometries with respect to the small source.
s Along beamline facilitates such a configuration.

40 keV coherent flux (fraction):

AN/ A 12 0
05 106 1.8 x 102 ph/s/0.1%bw (0.0042)
(0m) Vif=3im V:f=104m (180m)
source > .
.......................................... e -

9 um "-EX HRM X!f’ V:31m/ 104m ratio "I > ® 31 um
Lo VL4 W O —— b 17 oo , A8um
e ] HEM| Xw H: 76m / 104m ratio. ... e

— 103
ANIA=10 (76m)
H:f=44'm

For a 70 m beamline, such large focal spots (in vertical) are not achievable.




BEAM-EXPANDING REFRACTIVE OPTICS (ZOOM-OUT)

s Some techniques requires a large beam in one or both directions:
— standard p-CT
— nf-HEDM uses line-focus, vertical <1 ym, many mm horizontal

s Beam expanders are efficient on a long beamline with a beam that starts smaill:
— low refractive power needed
— small aperture needed

MBA - 41 pm brightness mode, 3.5 m SCU, 70 keV

horizontal beam size at 35 m: 0.47 mm FWHM
horizontal beam size at 180 m: 2.46 mm FWHM

expand with: diamondlensf=-552mat34 m
0.6 mm aperture

expanded size at 180 m: 4.4 mm FWHM

efficiency: 69 %

For a 70 m beamline, beam expanders are less efficient, not straightforward.




MULTI-MODE IMAGING IN EXTREME ENVIRONMENTS

10um resolution 1 um resolution

Rotate and Scan (OD, 1D or 2D)

* Smaller APS-U horizontal beamsize -> enhanced
resolution/flux

* Voxellized scattering information (phases, strains, etc):
* Higher resolution for scattering tomo (shown)

 Higher disorder for PF-HEDM (grain-resolved)
APS Beam APS-U Beam

“Concurrent determination of nanocrystal shape and amorphous
LDRD 2021-3: “High pressure material characterization in 3-dimensions using X- phases in complex materials by diffraction scattering computed
ray diffraction-contrast computed tomography”, Y. Meng, C. Chuang, H. Sharma tomography”, M.E. Birkback et al, JAC 50(1), 2017



MULTI-MODE IMAGING OF SOLID STATE BATTERIES

Pristine Grain Map » Failed Grain Map
Q

= 1.3 mAh cm™

passed

Crystalline Amorphous
Domain Domain

« SSB materials -> complex interfaces:
amorphous/crystalline, polymorphic

« Decomposition reactions at interfaces
(thermally/electrochemically driven) lead to
disparate regions affecting transport

« Zoom-out -> identify “problem” zones

« Zoom-in -> probe inter/intra-grain
dynamics as well as grain boundaries

Superposition of 220 SG grains (light blue) with 230 SG grains

M.B. Dixit et al, Status and Prospect of in-situ and operando characterization of ‘zm": diam. sampl_es m-ope!'e?ndo.
solid-state batteries’, Engineering & Environmental Science 14 (9), 2021. real’ electrochemical conditions




HEXM (20-ID) & 1-ID: MULTI-SCALE, MULTI-MODAL IMAGING

Exploit MBA-
emittance for world-
leading high-energy
X-ray
characterization

Bridge current
length-scale gaps
through direct- and
reciprocal-space
methods

Multi-modal
techniques:
combinations of
spatial zoom-in/out
methods ->
including NEW HE-
coherence based

Density
Functional
Theory

Micro-

Molecular
Dynamics

Dislocation
Dynamics

Macro-

Single Crystal
Plasticity

Specimen

Component

Full Assembly

|

Length scale in meters

Polycrystal
Plasticity

Finite Element
Analysis

Scientific cases for hierarchical needs include: aerospace metals, batteries, SOFCs, nuclear materials and bio-materials
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H E D M (G RAI N 'RESO LVE D) LI M ITS Diffraction intensity proportional to grain

volume:
Wish to push HEDM ‘envelope’ out « Now use GE-RT41 with dynamic range
1e12
. ftwar r verlap (MIDA
Software to treat spot overiap ( S) « 10:1 max ratio in grain size (1000:1

* Improved detectors, energy resolution, focusing in intensity)

* Pilatus (CdTe) have DR 1e20 (at least
100:1 possible)

Monodispersed LaB6 ~1um grain
size reconstructed with 10k grains Ngrains

Battery materials at limit:1um vertical 4 Polydispersity
slice of Tin electrode (~0.5-5um grains)

HEg Grain Averaged

Fisld 1
_4,134e-01

_2_020057 EP[&StTC

-

~-0.000284

=-0.20713

Higher plastic strains using 2D focused beams and raster
scanning and/or DFM techniques

W 4140600
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TEMPORAL LIMITS

In situ diffraction during dynamic deformation

Projectile

Pho\todiode

ecimen

Today (since these measurements): Integrated lineout from Monel:(40 uys exposure)

« ~3x more flux (SCU); confirmed during in-situ AM
APS-U m
« 5-10x additional flux (pink beam) 220

~ 1us should be possible based on flux limit

200 21

Detector readouts (continuous):
 GE a-Si==200 ms

 Dexela CMOS==50 ms

* Pilatus CdTe==2ms | | | | |
° Lambda==1ms 20 30 40 50 y 60
New HEX detectors needed to take fullest advantage of flux Seatiering vector magnitude, q nm

P. Lambert, T. Hufnagel, K. Vecchio et al, Rev. Sci. Inst 85, 093901 (2014)

Intensity (arb.)




ACTIVATED MATERIALS LABORATORY (AML)

Objectives
» Facilitate users to safely conduct experiments on activated
materials at APS

* Improve sample accessibility and operational flexibility ->
enhance scientific productivity and enable expansion of in
situ testing capabilities

Scope and Function
* A Radiological Facility
» Receiving/shipping samples
* (Dis)assembling sample holder/containment
 Testing/maintaining in-situ equipment
* Handle nuclear reactor materials and fuels in solid form
» A central lab providing encapsulated Rad samples for

characterization at APS beamlines
Realization AML basement for

 DOE/NSUF provided funding for construction water retention
» Designed and approved using ALARA principles

Proximity to HEXM 20-ID-E endstation helpful for
conducting experiments there, but AML can service
any APS beamline




Data Handling and Real Time Processing

HEXM beamline is projected to produce 250 TB/day (peak) and 4
PB per year

Planning and R&D is in progress to scale existing HEXM HPC tools
and utilize compression

Aurora, > 1 Exaflop

Polaris, > 44 Petaflops 2023

2022
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COMPUTE WOR DV
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DETECTING DEFORMATION w/ HEDM DATA AND ML

= Can we use Al/ML to rapidly detect structural
deformation (e.g., onset of plastic deformation) without

complete data reduction?

— Provide actionable information to the users during
the experiment.

= One HEDM dataset per loading ~ 12 gigabyes!

Loading (MPa)

= New ML method for rapid event detection Ti-7 alloy

— Transform bulky, redundant image dataset into A Ry il
compact, semantic-rich representations of visually | o !
salient characteristics. f

' $

— This transformation permits subsequent rapid event .. !
detection based on proximity within compact feature . it
Spaces. 7

Hemant Sharma, Weijian Zheng, Dennis Trujillo, Zhengchun Liu, Peter Kenesei, Jun Park, Nino Miceli, Raj Kettimuthu




SUMMARY

« High energy x-rays provide unique properties:

« High space and time resolution
« 3D and (typically) non-destructive
« Avariety of in-situ environments

« Multi-modal studies can provide key scientific insight:

« Hierarchical materials: bio-materials, aerospace & nuclear alloys, batteries, composites
« Example of fatigue in embedded inclusion: understanding & enhancing models for crack
initiation/growth

« APS Upgrade (as well as others worldwide) will enhance HEX capabilties

 New beamlines for “smaller needles, bigger haystacks”
« Starting late 2024 (1 year dark year)
» Collaborations are essential for highest impact
« Expert users — technical and scientific commissioning +
* Non-traditional users — bring science (and we + experts bring techniques+software)
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